
CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Description

Page 1 of 16

CambridgeIC’s Central Tracking Unit (CTU) chips work
with sensors built from PCBs to measure the position
of contactless targets using resonant inductive sensing
technology.

CTU chips are designed to be embedded inside
electromechanical products, and communicate with a
host system processor over an SPI interface.

To assist demonstration, evaluation and development,
CambridgeIC provides hardware and software that
works with a PC. A CTU Adapter enables a PC to
communicate with CTU chips by converting between
SPI and USB interfaces.

This document describes a set of LabVIEW Virtual
Instruments (VIs) that communicate with CambridgeIC
CTU chips using a PC connected to a CTU Adapter.
These VIs can be used to create custom applications
that communicate with CTU chips.

Applications
• Customised demonstrations
• Customised test systems

Features
• Simple example VI for taking measurements
• Example VI for taking averaged measurements
• Example VI for setting position triggers
• Full set of sub-VIs for advanced communications
• Approximately 100 SPI transfers per second

System Requirements
• Windows XP, Vista or Windows 7
• National Instruments’ LabVIEW software (V 8.5 on)

Figure 1 System block diagram

CAM204A
CTU Chip

Resonant Inductive Position
Sensing System

Sensor PCB

Target

CambridgeIC
CTU Adapter

SPI
Interface

USB
Interface

Windows CTU
Adapter Driver

FTDI DLL
(ftd2xx.dll)

CambridgeIC DLL
(CambridgeIC.dll)

National Instruments’ LabVIEW

Windows PC

CambridgeIC VIs

Customer VIs

Customer test
equipment

Interface
software

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 2 of 16

1 Introduction

1.1 Audience
This document assumes the reader is familiar with programming in National Instruments’ LabVIEW.

1.2 Software Design
The software is designed to run in the environment illustrated in Figure 1. The PC is connected to a CambridgeIC CTU
chip with a CTU Adapter using a USB port.

The Virtual Instruments (VIs) described in this document are coded using National Instruments’ LabVIEW graphical
programming language. They require LabVIEW to be installed on the target PC. LabVIEW can alternatively be used to
build stand-alone applications, providing Application Builder is installed.

The VIs use two DLLs for communicating with the CTU Adapter. The higher level one is CambridgeIC.DLL, and this
contains all of the functions required to send data to and from a CTU chip over its SPI interface, together with
functions for controlling the Adapter itself. The Adapter contains a chip for USB communication from FTDI. This has
its own DLL, ftd2xx.DLL, which must also be loaded on the PC to enable CambridgeIC.DLL to communicate with the
Adapter. They are also included in the installer.

The Adapter requires a Windows driver, whose installation is described in the CambridgeIC CTU Software User Guide.

1.3 Communication with CambridgeIC.DLL
LabVIEW communicates with CambridgeIC.DLL using .NET controls, which can be found in the connectivity tools
palette. There are sub-VIs which communicate with the DLL in this way (e.g. CtuPowerControl), and it is not
normally necessary to access such low-level functions directly.

All VIs that communicate through the Adapter require a valid Adapter reference input, which is generated by
AdapterOpen or QuickStart. They also output this reference, and Adapter reference out should be wired to the
next VI that communicates through the Adapter. It is good practice to close an adapter reference before a main VI
stops using AdapterClose. However this is not essential.

CambridgeIC.DLL requires ftdxx.DLL for correct operation. Both may be installed alongside the CambridgeIC CTU
Software using the installer described in the CambridgeIC CTU Software User Guide. They may alternatively be saved
to the user’s LabVIEW working directory.

1.4 CTU Datasheet
This document makes references to CTU register locations, which are used to configure CTU chips and read back data.
The function of each of these registers is detailed in the relevant CTU chip datasheet.

1.5 Document Conventions
The names of VIs and DLLs are highlighted like this: CTU Demo, or to the name as it appears in the VI file name such
as CtuDemo. The suffix _2x is used in the full VI file name denotes version 2.x of the software. This, and the final .vi
in the file name, is omitted for clarity.

The names of window controls and indicators are shown like this: Next.

1.6 Organisation of this Document
The following main sections illustrate how to perform common tasks using the VIs supplied by CambridgeIC for
communicating with the CTU. Designs become progressively more complex, and later examples assume familiarity
with earlier ones.

Section 6 includes a complete listing of the VIs provided together with a brief description. Section 7 is a
troubleshooting guide in case the system does not work as expected.

1.7 Modifying CambridgeIC VIs
The example VIs below are intended to be modified to form the basis of a customer’s own application. It is strongly
recommended that the CambridgeIC VIs are not themselves modified, however. It is preferred to “save as” … “open
an additional copy” within LabVIEW to preserve the original examples. In the more unlikely event that a sub-VI
requires modification, it is also recommended to modify a separate copy and not the original.

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

2 Checking Communications with the Adapter
AdapterTest is a simple application that can be used to check communications with the CTU Adapter. The front panel
is shown in Figure 2. When run, it configures the CTU Adapter then turns on and off power and pull-ups under control
of two buttons. Their state should be reflected in the state of the LEDs on the Adapter’s physical front panel.

Figure 2 Adapter Test front panel

AdapterTest also includes controls for an I2C controlled SPI Expander, which may be used to select between CTU
chips on the same SPI bus in multi-CTU systems. Multi-CTU support should be set to 1 if an SPI Expander is
connected or 0 otherwise. Use the CTU to Select control to switch the SPI Expander between different CTU chips.
Although this VI does not actually communicate with CTU chips, LEDs on the SPI Expander should light to indicate
which is selected.

The block diagram is illustrated in Figure 3. Communications is first opened using AdapterOpen, then the Adapter is
configured using AdapterConfigure. Adapter and VI information is retrieved using AdapterGetInfo.
CtuPowerConrtrol and CtuPullUpControl are run in a loop, and controlled with appropriately named buttons.
SelectSpiSlave operates the SPI Expander, if present.

The STOP control exits this loop, whereupon AdapterClose is run to close communications with the Adapter.

Figure 3 Adapter Test block diagram

Page 3 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

3 Taking Single Measurements
This section describes how to use the VIs provided to take position measurements with a CTU chip. It is based on the
example application CtuSimpleMeasureType1. This VI can form the basis of simple demonstration and test
applications.

When assessing CTU system performance, it is usually best to use a VI that takes and processes multiple samples as
described in the next main section. This provides more insight into CTU performance since it measures the noise
present in output data. It also yields a higher resolution position output through averaging.

Figure 4 illustrates the front panel of CtuSimpleMeasureType1. Figure 5 shows the VI’s block diagram. QuickStart
is used to configure and test the Adapter and CTU chip. The constant Sensor Type is wired to QuickStart and is set
for type 1 sensors. QuickStart has an output Adapter and DLL info which is wired to the front panel and lists
version and serial number information for the Adapter and DLL. It also outputs CTU info, which lists version and
System ID information for the CTU chip.

The Sensor number control selects which sensor to measure. This is wired to the VI that actually instructs the CTU
to take measurements: CtuWriteReadResults. This VI also requires SCW register contents as an input, supplied as
a cluster constant on the block diagram. GO is set to TRUE to kick off another measurement. CONT is set to FALSE
so that the CTU operates in single shot mode. That way, each time the PC collects one set of measurements the CTU
will start measuring again. NEW is set to FALSE so that the sensor’s NEW flag is reset. The state of the other controls
within SCW do not matter for this application.

Figure 4 CTU Simple Measure Type 1 front panel

CtuWriteReadResults outputs the previous state of the following registers: SCW, PTEF, RESA, RESB, RESC, and
these values are wired to an indicator on the front panel. LabVIEW’s Index Array function is used to pick out SCW,
which is passed to CtuInterpretScw. This VI decodes SCW as measured back from the CTU chip and the results are
displayed on the front panel.

Figure 4 shows the expected state of SCW decoded when CtuSimpleMeasureType1 is run with a target present:
GO FALSE (cleared by CTU following successful measurement), NEW TRUE (new measurement results available) and
VALID TRUE (target present). The remainder of the bits of SCW reflect the values originally wired to
CtuWriteReadResults.

Page 4 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Figure 5 CTU Simple Measure Type 1 block diagram

LabVIEW’s Array Subset function is used to pick out the results registers: RESA, RESB and RESC. These are wired to
InterpretType1Results. This VI processes individual results and outputs them in a meaningful format as the cluster
Processed results wired to the front panel.

CTU Reported Position is the raw CTU position output (RESA interpreted as a signed 16-bit word). This is scaled
into physical units using the value of Sin Length. Sin Length is quoted in a sensor’s datasheet. Set Sin Length to
360 for reported position in degrees when operating a 360° rotary type 1 sensor. For type 1 linear sensors, Sin
Length is usually slightly greater than a sensor’s Measuring Length. Setting the Sin Length control to 100 yields
reported position as a percentage of the sensor’s actual Sin Length.

CtuWriteReadResults is run in a while loop that is stopped with the STOP button or on an error. When stopped,
AdapterClose is run to close communications with the Adapter. Then LabVIEW’s built in VI Simple Error handler is
called to highlight any errors that have occurred to the user.

CtuSimpleMeasureType1 calls CtuWriteReadResults continuously, without any time delay in the loop. Calls to
CtuWriteReadResults can not be separated in time by any less than 1ms due to the PC’s USB interface. Since each
Type 1 measurement takes the CTU chip less than 1ms, measurement will always be complete (NEW TRUE) the next
time the VI runs.

Page 5 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

4 Taking and Processing Multiple Measurements
CtuMeasureAndAnalyse takes multiple measurements from a selected sensor and processes the results to yield a
set of Measurement statistics including Position Average and Position Std Dev (standard deviation).

The number of measurements is set by Requested Num VALID. A larger number yields more averaging, so that the
output Position Average has lower noise and higher resolution. For every factor of 4 increase in Requested Num
VALID, resolution improves by approximately 1 bit.

This VI is recommended for measuring CTU system performance, so that systematic errors and noise can be treated
separately. It is also recommended for single sensor demonstration applications that do not need the maximum
update rate of 100 per second.

CtuMeasureAndAnalyse is called by CtuRepeatAverage, whose front panel is illustrated in Figure 6 and the block
diagram in Figure 7. The design is similar to CtuSimpleMeasureType1 described in section 3, and the description
below highlights only the main differences.

QuickStart is called at the start of execution to configure the CTU Adapter and CTU. This time two additional controls
are wired to the VI. Multi CTU Support should be set to 0 if the system is configured normally, with the CTU Adapter
addressing a single CTU. If an SPI Expander is attached, set Multi CTU Support to 1 and CTU to Select to the
appropriate CTU number.

Sensor Type is a front panel control whose value must match the type of sensor connected to the CTU’s Sensor
number input for correct operation. Sin Length scales the position values reported by the CTU to physical units used
for Position Average, Position Std Dev and Position Pk Dev From Ave and Position results. Its value should
match the value quoted in the sensor’s datasheet (the value of Fine Pitch A in the case of Type 2 sensors).

Figure 6 CTU Repeat Average front panel

The Measurement statistics cluster contains some indicators that are specific to certain sensor types, which are set
to 0 when not applicable. For example, the CTU does not report Amplitude B or BA Position Mismatch values for a
Type 1 sensor.

The Measurement statistics cluster includes Number of VALID samples. This will normally equal Requested
Num VALID if a target is in range, otherwise 0.

Page 6 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

CtuMeasureAndAnalyse also outputs individual processed measurements in the form of arrays, once point for each
CTU measurement: Position results, Amplitude results and Relative frequency results. The indicators are
hidden on the block diagram of Figure 6, but visible on the block diagram of Figure 7. Note that the time interval
between individual measurements can be highly variable since it is based on PC timings.

Figure 7 CTU Repeat Average block diagram

VIs which are distributed as CambridgeIC CTU Software applications, including CTU Repeat Average, use the sub-VI
GetLogo to retrieve an image of the CambridgeIC logo from the file logo.bmp. Other VIs display a fixed, default logo.

Page 7 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

5 Reading Multiple Sensors
CtuDemo can read measurement results from multiple sensors connected to the CAM204A CTU chip, providing the
Sensor Type allows it. Its operation is detailed in the CambridgeIC CTU Software User Guide.

Unlike previous examples, CtuDemo can operate in the CTU’s continuous mode (CONT = TRUE) as well as single shot
mode (CONT = FALSE). When operating in continuous mode, the VI uses the CTU’s sample indicators to signal when
all active sensors have completed measurement. Using sample indicators requires the CTU’s SIC register to be
configured. The SIC contents cluster constant determines settings. SMAP maps each sensor’s sample indicator to
the user IO pin of the same number. SCTRL = 1 means sample indicators are triggered on NEW measurements.
SAUTOCLR = 0 means the CTU does not clear sample indicators itself. Instead, they are cleared by writing FALSE to
the sample indicator flag SIF within each sensor’s SCW register. These values are written to each sensor’s SIC
registers using CtuSetMultiSensorSampleIndicators.

Using continuous mode also requires a write to the CTU’s SYSI register to change the interval between samples on
each sensor timed by the CTU. CtuSetSystemInterval is called from inside a case structure which is only TRUE
when the value of SYSI changes.

Figure 8 CTU Demo block diagram (left hand end)

QuickStart ‘s outputs include Sensors active, a boolean array with one entry per sensor which is TRUE for active and
FALSE for inactive. This VI determines the default states (all active), and the number of array entries (the maximum
number for the Sensor Type).

CtuWriteReadResults is called to collect the results of each measurement from each sensor. It is called from within
a for loop, once for each entry in the Sensors active array (each possible sensor). It is also inside a case loop
controlled by Sensors active, so that it only runs if the selected sensor is active.

The outputs of CtuWriteReadResults are passed to either DisplayType1Results or DisplayType2Results for
display, depending on Sensor Type. They are shown in Figure 9. These two VIs are configured to launch when
CtuDemo is run (right click on the VI in the block diagram, click on SubVI Node Setup and select show front panel

Page 8 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

when called). The results of Type 1 sensor measurement are a 2D array (5 registers x 4 sensors) while the results of
Type 2 sensor measurement are a 1D array (8 registers x 1 sensor).

DisplayType1Results includes a button array allowing the user to control which sensors are active, and it passes this
array back to CtuDemo to update the state of the Sensors active array accordingly. Both display VIs also pass back
the state of an alternative STOP button located on their front panels.

Figure 9 CTU Demo block diagram (right hand end)

If the system is running in continuous mode, CtuDemo now waits for the sample indicator of the highest numbered
active sensor to become active, signaling that new measurements are ready and the main while loop can execute
again to collect this next set of measurements. HighestActiveSensor takes the Sensors active array and determines
which is the highest numbered active sensor. It then passes this value to CtuWaitForSampleIndicator, which runs
until that sample indicator becomes active.

CtuDemo includes a front panel button which appears as Power down mode in Figure 9 and allows the user to
control the CTU’s PWRDN bit in its SYSCW register. This causes the CTU to cease measurements in progress and enter
a low power mode. CtuSetPwrdn is used to enter this mode, and CtuExitPwrdn is used to exit.

Page 9 of 16

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 10 of 16

6 VI Descriptions
The following table includes a list of VIs in alphabetical order, and a description of each one. For readability, the
highlighting conventions of section 1.5 have not been applied.

File name (minus _2x.vi) Description

AdapterClose It is good practice to include this VI at the end of an application to close
communications with the Adapter.

AdapterConfigure Configures the adapter. Must be run after AdapterOpen and before any other
VIs. Included in QuickStart.

AdapterGetInfo Retrieves Adapter and DLL version information. Included in QuickStart.

AdapterInternalReset Resets the Adapter itself. Not normally required. AdapterConfigure must be run
afterwards for correct operation.

AdapterOpen Opens communications with Adapter and creates an Adapter Reference (see
section 1.3). Included in QuickStart.

AdapterReadCharacters Communicates with the Adapter at a low level. Not normally required.

AdapterTest Small application for testing communication with the Adapter on its own without
a CTU chip attached. See section 2.

AdapterWriteCharacters Communicates with the Adapter at a low level. Not normally required.

AdapterWriteReadCharacters Communicates with the Adapter at a low level. Not normally required.

AnalyseMultiCtuResults Processes a set of raw, valid CTU measurements and outputs processed data
series plus statistics. Called by CtuMultiMeasureAndAnalyse.

BuildScwArray Used to create an array of SCW register controls, one for each sensor, for
passing to CtuWriteReadResults.

CalculatePositionStats As below, but calls UnwrapPhaseAngle to handle the discontinuity between
±180° if rotary.

CalculateStats Used by AnalyseMultiCtuResults to calculate the average, standard deviation and
peak deviation from average of the input array.

CtuBuildPTEF Calculates the contents of the CTU’s PTEF register from arrays containing
individual enables and flags. Called by CtuWriteReadResults.

CtuBuildSCW Calculates the contents of the CTU’s SCW register from its individual contents
formatted as a cluster. Called by CtuWriteReadResults.

CtuChangeSysID Performs a register write read to the SYSID register location to change the value
read out during the address word of all subsequent SPI data transactions. This
VI is used to test for successful CTU reset within CtuResetAndCheck. All other
VIs that communicate with the CTU check for the default value of SYSID, and will
normally return an error if the value has been changed. When run, the VI
returns the previous value of SYSID before the change, as reported over the SPI
interface, and not the newly programmed value.

CtuCheckSysID Checks whether its SYSID input matches the expected value. Generates errors if
not, or if the CTU is waiting for firmware to be loaded.

CtuConfigureIOs Configures the CTU’s IOs for active high or low, and open drain or digital.
Converts cluster of input settings to appropriate SYSINT value and writes to the
CTU’s SYSINT register.

CtuConfigureMultiSensor
PositionTriggers

Calls CtuConfigurePositionTriggers multiple times to configure position triggers
for all sensors.

CtuConfigurePositionTriggers Configures the CTU’s position trigger registers. Input parameters are processed
to determine register settings, then these are written to the CTU. Called by
CtuConfigureMultiSensorPositionTriggers.

CtuDemo Main demo application documented in the CambridgeIC Software User Guide and
in section 5. Displays measurement results in a separate window which depends
on Sensor Type.

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 11 of 16

File name (minus _2x.vi) Description

CtuExitPWRDN Execute this VI to exit the CTUs’ power down mode. Used in CtuDemo, see
section 5.

CtuInterpretSCW The CTU’s sensor control word register contains bits for controlling the CTU’s
measurements on that sensor (e.g. GO) and single bit results (e.g. VALID). This
VI converts an SCW value to a cluster representing each bit. Used where SCW
decoding is required, e.g. CtuMultiWriteReadResults.

CtuMultiMeasureAndAnalyse Takes a set of measurements and analyses them using AnalyseMultiCtuResults.
Used by CtuRepeatAverage, see section 4.

CtuMultiWriteReadResults Calls CtuWriteReadResults multiple times to collect a set of results for a single
sensor. Discards invalid data. Called by CtuMultiMeasureAndAnalyse.

CtuNumberResults Lists how many results to collect, which differs by sensor type. Called by
CtuWriteReadResults.

CtuPowerControl The Adapter has a power supply output to the CTU. This VI controls whether
power is on or off. Called by QuickStart. Also called by AdapterTest, see section
2.

CtuPullUpControl The Adapter has switchable pull-ups for the CTU’s SPI lines. This VI controls
whether they are active or not. They should be set to active for correct
operation, unless pull-ups are connected by another means. QuickStart calls this
VI and sets pull-ups to active. Also called by AdapterTest, see section 2.

CtuReadIOs This VI reads the state of the CTU’s user IO outputs. For correct operation, they
must be set to digital, e.g. with CtuConfigureIOs, or pull-up resistors should be
fitted. There are no switchable pull-ups in the Adapter; the pull-ups controlled
by CtuPullUpControl are the SPI interface lines only. CtuReadIOs is called by
CtuWaitForSampleIndicator to read the CTU’s user IOs without performing an
SPI transaction.

CtuReadRegister This VI performs a read from the selected CTU register address. Also returns IO
states.

CtuReadRegisters This VI performs a read from multiple CTU addresses. The start address and
number of addresses to read from are specified. Called by CtuReadVerAndID.
Also returns IO states.

CtuReadVerAndID Reads bootloader and system versions, and system ID. Uses CtuReadRegisters
to read from the 3 adjacent CTU registers involved. Called by
CtuResetAndCheck, which is called by QuickStart.

CtuRepeatAverage Documented in the CambridgeIC CTU Software User Guide, and in section 4.
Also demonstrates use of CtuMultiMeasureAndAnalyse.

CtuResetAndCheck Performs a CTU reset. Checks that a reset has happened by checking that the
SYSID register returns to its default value. Returns CTU version information.
Called by QuickStart. By default, this VI uses CtuResetWithSpi to reset the CTU
chip (Type of reset = 1). If Type of reset is instead set to 2, the Adapter uses
CtuToggleResetPin instead, which will only work if the Adapter’s nRESET pin is
connected to the CTU.

CtuResetWithSpi Performs a CTU reset over the SPI interface by writing to the SYSCW register.

CtuSetMultiSensorSample
Indicators

Sets each sensor’s SIC register by repeatedly calling
CtuSetMultiSensorSampleIndicators. Called by CtuDemo, see section 5.

CtuSetPwrdn Execute this VI to enter the CTUs’ power down mode. Used in CtuDemo, see
section 5.

CtuSetSampleIndicatorControl Sets the CTU’s SIC register of a single sensor from its individual components
supplied as a cluster. Called by CtuSetMultiSensorSampleIndicators.

CtuSetSensorType Writes to the CTU’s TYPE register location for a selected sensor to configure that
sensor for the specified Sensor Type. Called by CtuSetSensorTypeMultiSensor.

CtuSetSensorTypeMultiSensor The CTU can be configured to measure multiple sensors, and that number
depends on Sensor type. This VI writes the same Sensor TYPE to all possible

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 12 of 16

File name (minus _2x.vi) Description
sensors for that type. Also lists which sensors are possible, in the form of a
Boolean array. Calls CtuSetSensorType. Called by QuickStart.

CtuSetSystemInterval Writes to the CTU’s SYSI register, which specifies the interval between
measurements on a particular sensor when the sensor is operating in continuous
mode. Called by CTU demo, see section 5.

CtuSimpleMeasureType1 Example VI described in section 3. Takes measurements from a selected Type 1
sensor.

CtuToggleResetPin This VI toggles the Adapter’s nRESET output pin low for a short period, which will
reset the CTU if nRESET is connected to it.

CtuWaitForSampleIndicator When called, this VI runs until a sensor’s sample indicator becomes valid. It is
used by CtuDemo to pause communications until the CTU reports that new
measurements are available using sample indicators, see section 5. This VI
requires SIC register contents for each active sensor as an input, so that it
knows which IO and to test and which polarity to test for.

CtuWriteReadRegister This VI writes new data to the selected CTU register address. It outputs the
previous register contents (NOT the newly written data). It also returns the
states of the CTU’s user IO pins. Called by several VIs including
CtuConfigureIOs.

CtuWriteReadRegisters This VI writes data to adjacent CTU registers, starting at the specified address.
It outputs the previous contents of the registers (NOT the newly written data).
It also returns the states of the CTU’s user IO pins. Called by
CtuWriteReadResults.

CtuWriteReadResults This VI performs a write read SPI transaction to the selected sensor’s SCW, PTEF
and results registers. This single transaction can be used to read the most
recent results form that sensor, and to configure and kick off another
measurement on the sensor. It also manipulates the flags and enables present
in the SCW and PTEF registers to control the CTU’s user IOs. Called by all VIs
that perform measurements, for example CtuSimpleMeasureType1, see section
3.

CtuWriteReadSpi This VI performs an SPI write read, in 16-bit word sized chunks. It is not
normally required, since all CTU communication is register based and higher
level VIs for register access such as CtuWriteReadRegisters are available.

DisplayType1Results Used by CtuDemo to display the results of measurement on up to 4 Type 1
sensors, see section 5. Also used for Type 4 sensors. The Sin Length parameter
sets the scaling factor from CTU units to physical units such as mm or degrees.
This VI also returns the states of active/inactive buttons for each sensor which
appear on its window.

DisplayType2Results Used by CtuDemo to display the results of a measurement of a Type 2 sensor,
see section 5.

DisplayType3Results Used by CtuDemo to display the results of a measurement of a Type 3 sensor.

ErrorCodeInterpreter This VI interprets the numeric error code returned by CambridgeIC.DLL. It is
called by every VI that communicates directly with the Adapter using that DLL.
It is normally used together with LabVIEW’s built in VI “Error Cluster From Error
Cod” to signal an error to the application. AdapterOpen is a typical example.

GetDateAndTime Used by SaveToFile to time and date stamp measurements.

GetLogo Retrieves logo image from file (logo.bmp).

HighestActiveSensor This VI is used by CtuDemo to work out which sensor’s sample indicator to wait
for. See section 5.

InterpretType1Results This VI is used to interpret raw results register CTU contents for a Type 1 sensor.
It scales raw CTU position measurement into physical units such as mm or
degrees using the Sin Length input parameter. Usually called after
CtuWriteReadRegisters to interpret results. For example in
CtuSimpleMeasureType1, see section 3. Also used for Type 4 sensors, which
have the same results register format as Type 1.

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 13 of 16

File name (minus _2x.vi) Description

InterpretType2Results As above, but for a Type 2 sensor. Also works for Type 3.

IterationsPerSec This VI can be used to determine an approximate number of iterations per
second using the PC’s internal clock. Called by CtuDemo to measure update
rate, see section 5.

PauseComms This VI pauses operation for the specified number of milliseconds. It is used
where a delay is required, for example within CtuPowerControl to ensure that the
change in power state has time to take effect before the VI finishes. It may also
be used in loops to prevent LabVIEW from executing the loop so rapidly that it
consumes all of the PC’s CPU cycles.

PauseSingleShot Pauses for a length of time which depends on sensor Type, to allow the next CTU
measurement to complete before the PC attempts to read its results.

QuickStart This VI performs commonly required configuration tasks for the CTU Adapter and
the CTU itself. It opens and configures the Adapter, activates the power supply
and SPI pull-ups, checks communications with the CTU including a reset,
configures the CTU’s outputs and sets sensor type(s). See sections 3, 4, 5 for
examples.

SaveToFile Saves measurements to file. Called by CtuDemo and CtuRepeatAverage when
“Save to File” is activated. Takes data in the form of a text array. First column
is data label, second is the data itself.

SelectSpiSlave Selects which CTU device to select when a system has more than one on the SPI
bus. Requires an I2C controlled SPI bus Expander. Used by CtuRepeatAverage
among others. See section 5. Included in QuickStart.

U16toI16 This VI converts a raw unsigned 16-bit word (U16) to a signed 16-bit word (I16).
It is called by InterpretType1Results to convert appropriate register contents to
signed quantities.

UnwrapPhaseAngle Takes an input array of phase angles and “wraps” it to remove artificial phase
jumps around +/- 180 degrees. This is important prior to performing an average
and any other function that requires an input that is continuous.

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 14 of 16

7 Troubleshooting Guide

Symptom Possible cause Rectification

Error 5001: DEVICE
NOT FOUND

Adapter not plugged into USB port Plug it in

Adapter driver not installed Install driver, please refer to the CambridgeIC
CTU Software User Guide

Adapter driver disabled Re-Enable driver, please refer to the
CambridgeIC CTU Software User Guide

Adapter not yet enumerated Wait 5 seconds between plugging in the Adapter
and running any application that uses it

Error 5002: DEVICE
NOT OPEN

A VI has been called with an
Adapter reference input that has
already been closed

Call OpenAdapter to create a new Adapter
reference.

Error 5004: Read
timeout…

Adapter power selector link missing Check there is a link selecting between 2V7, 3V3
and 3V6 fitted through the Adapter’s rear panel.

Error 5008: Adapter
Error

Adapter internal error Unplug the Adapter from the PC’s USB port then
plug it back in again and wait 5 seconds.

Error 5010: Exceeded
max iterations waiting
for active IO

Sample indicators not correctly
configured

Check the sensor’s SIC register contents. The
AUTOCLR bit should be FALSE, and SCTRL TRUE.

SIC and IO configuration not wired
to CtuWaitForSampleIndicator

Wire the current multi-channel SIC contents and
IO configuration to the VI.

The CTU’s user IOs are not
connected to the CTU

Connect them, or
Use single shot mode instead of continuous

Error 5012: Did not get
expected SYSID from
CTU

Adapter to CTU SPI interface not
properly connected

Check SPI connections

CTU chip not powered Check power is supplied to the CTU by the
Adapter or other means

Error 5013: SYSID =
0x10AD: CTU firmware
missing

CTU firmware update was
interrupted while in progress

Try uploading CTU firmware again

Error 5107: Failed mid-
stream

Upload CTU firmware

Error 1172 occurred at
Error calling method…

A VI communicating with the
Adapter does not have a valid
Adapter reference input

Wire the Adapter reference output of the
previous VI that communicates with the Adapter,
or to OpenAdapter.

CTU does not report
VALID when a target is
present

A sensor or excitation coil
connection is missing or shorted

Check sensor and its connections

A Type 2 sensor is being used with
Sensor Type set to 1

Change Sensor Type to match the sensor type
connected

The CTU is measuring a different
Type 1 sensor

Check that Sensor number matches the CTU
input number that the sensor is connected to

The CTU is measuring an invalid
Type 2 sensor number

Check that Sensor number is set to 1 for a Type
2 sensor

The CTU’s excitation circuit is not
working

Check the circuit conforms to the CTU datasheet

The target is not working Try a different target

The target’s frequency has been
changed by nearby metal beyond
the CTU’s tuning range

Check for metal closer to target and sensor than
specified in their datasheets

Misaligned target Check sensor datasheet for correct alignment of

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 15 of 16

Symptom Possible cause Rectification
sensor and target

Reported position does
not change smoothly
with target position

A sensor coil connection is missing
or shorted

Check sensor and its connections

A Type 1 sensor is being used with
Sensor Type set to 2

Change Sensor Type to match the sensor type
connected

Reported position in
mm or degrees
incorrect

Incorrect value of Sin Length for
the sensor

Check that the value used matches the
appropriate value from the sensor’s datasheet

Position noise different
to that expected

First few
measurements with
target in-range are
invalid

This is normal; it can take up to 10
samples before the CTU locks on to
the target’s frequency

Consider using CtuMultiMeasureAndAnalyse to
collect position measurements. This VI discards
any initial invalid samples.

Front panel controls
unresponsive when
running

The VI is consuming all of the PC’s
CPU resources sitting in a loop

Add a time delay to the loop, e.g. with
PauseComms.

Stop the VI, change the control and run it again.

Other errors A VI has an unwired input and the
default value is not appropriate

Wire correct values to the VI’s input

Unknown LabVIEW error Try closing and re-starting LabVIEW.

Unknown Adapter error Try unplugging the Adapter from the USB port
and plugging it back in again.

CTU LabVIEW VI User Guide

Document part no 033-0008_0003
© Cambridge Integrated Circuits Ltd 2009-2010

Page 16 of 16

8 Document History

Revision Date Description

0001 17 August 2009 First draft

0002 29 January 2010 Updated logo and style

0003 22 July 2010 Changed to reflect CTU Software version 2.x

9 Contact Information

Cambridge Integrated Circuits Ltd
21 Sedley Taylor Road
Cambridge
CB2 8PW
UK

Tel: +44 (0) 1223 413500

info@cambridgeic.com

10 Legal
This document is © 2009-2010 Cambridge Integrated Circuits Ltd (CambridgeIC). It may not be reproduced, in whole
or part, either in written or electronic form, without the consent of CambridgeIC. This document is subject to change
without notice. It, and the products described in it (“Products”), are supplied on an as-is basis, and no warranty as to
their suitability for any particular purpose is either made or implied. CambridgeIC will not accept any claim for
damages as a result of the failure of the Products. The Products are not intended for use in medical applications, or
other applications where their failure might reasonably be expected to result in personal injury. The publication of this
document does not imply any license to use patents or other intellectual property rights.

mailto:info@cambridgeic.com

	Description
	Applications
	Features
	System Requirements
	1 Introduction
	1.1 Audience
	1.2 Software Design
	1.3 Communication with CambridgeIC.DLL
	1.4 CTU Datasheet
	1.5 Document Conventions
	1.6 Organisation of this Document
	1.7 Modifying CambridgeIC VIs

	2 Checking Communications with the Adapter
	3 Taking Single Measurements
	4 Taking and Processing Multiple Measurements
	5 Reading Multiple Sensors
	6 VI Descriptions
	7 Troubleshooting Guide
	8 Document History
	9 Contact Information
	10 Legal

